
BETA-Rec: Build, Evaluate and Tune Automated Recommender
Systems

Zaiqiao Meng
Richard McCreadie
Craig Macdonald

Iadh Ounis
Siwei Liu

Yaxiong Wu
Xi Wang

zaiqiao.meng@gmail.com
University of Glasgow

Shangsong Liang
Yucheng Liang
Guangtao Zeng
Junhua Liang

Sun Yat-sen Univeristy

Qiang Zhang
University College London

ABSTRACT
The field of recommender systems has rapidly evolved over the last
few years, with significant advances made due to the in-flux of deep
learning techniques. However, as a result of this rapid progress,
escalating barriers-to-entry for new researchers is emerging. In
particular, state-of-the-art approaches have fragmented into a large
number of code-bases, often requiring different input formats, pre-
processing stages and evaluating with different metric packages.
Hence, it is time-consuming for new researchers to reach the point
of having both an effective baseline set and a sound comparative
environment. As a step towards elevating this problem, we have
developed BETA-Rec, an open source project for Building, Evalu-
ating and Tuning Automated Recommender Systems. BETA-Rec
aims to provide a practical data toolkit for building end-to-end
recommendation systems in a standardized way. It provides means
for dataset preparation and splitting using common strategies, a
generalized model engine for implementing recommender models
using Pytorch with 9 models available out-of-the-box, as well as
a unified training, validation, tuning and testing pipeline. Further-
more, BETA-Rec is designed to be both modular and extensible,
enabling new models to be quickly added to the framework. It is
deployable in a wide range of environments via pre-built docker
containers and supports distributed parameter tuning using Ray. In
this demo, we will illustrate the deployment and use of BETA-Rec
for researchers and practitioners on a number of standard recom-
mendation datasets. The source code of the project is available at
github: https://github.com/beta-team/beta-recsys.

CCS CONCEPTS
• Information systems→ Collaborative filtering.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
RecSys ’20, September 22–26, 2020, Virtual Event, Brazil
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7583-2/20/09.
https://doi.org/10.1145/3383313.3411524

KEYWORDS
Recommender Systems, Framework, Open-source, Toolkit

ACM Reference Format:
Zaiqiao Meng, Richard McCreadie, Craig Macdonald, Iadh Ounis, Siwei
Liu, Yaxiong Wu, Xi Wang, Shangsong Liang, Yucheng Liang, Guangtao
Zeng, Junhua Liang, and Qiang Zhang. 2020. BETA-Rec: Build, Evaluate and
Tune Automated Recommender Systems. In Fourteenth ACM Conference
on Recommender Systems (RecSys ’20), September 22–26, 2020, Virtual Event,
Brazil. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3383313.
3411524

1 INTRODUCTION
Recommender systems that suggest items of interest to users based
on available information such as purchases and interactions histo-
ries have been the subject of intensive research by both industry
and academia in recent years [3–5, 12]. In particular, deep learning
techniques have achieved tremendous success in recommender sys-
tems, leading to large and significant improvements in performance
being reported [3, 4, 12].

However, partially as a result of this intensive and rapid progress,
there are now many barriers-to-entry in the recommendation field
for new researchers, as well as increasing challenges when com-
paring different works from the literature. In particular, current
challenges include: 1) the implementations are fragmented across
different code repositories and often do not function out-of-the-box;
2) the reported performances across works are often not compa-
rable even when reported on the same dataset and with the same
metrics;1 3) the usage of different evaluation toolkits is problematic
as subtle differences in metric implementations lead to different
reported performances; 4) the inconsistency among various tun-
ing strategies of models (notably the omission of baseline tuning)
leads to unfair comparisons. Indeed, recent works [1, 6, 7, 11] have
demonstrated that, without properly tuning model hyperpareme-
ters, existing state-of-the-art deep learning baselines cannot even
consistently outperform a non-neural linear ranking models. Hence,
there is a clear need for platforms that provide a common recom-
mendation methodology and pipeline, enabling model comparison
across datasets, metrics, and baselines in a sound and fair manner.

1Since data pre-processing and splitting techniques differ each other.

588

https://github.com/beta-team/beta-recsys
https://doi.org/10.1145/3383313.3411524
https://doi.org/10.1145/3383313.3411524
https://doi.org/10.1145/3383313.3411524
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3383313.3411524&domain=pdf&date_stamp=2020-09-22


RecSys ’20, September 22–26, 2020, Virtual Event, Brazil Zaiqiao Meng, et al.

Prepare 
Data

Build
Models

Tune & Train
Models

Evaluate
Models

DatasetBase

DataBase

Movielens 
Yelp
…

ModelEngine

MF
NCF

NGCF
Triple2vec

…

TrainEngine EvalEngine
Logging

Monitoring
Input/Output
Tensorboard

RMSE
MAE

Recall
NDCG

…Ray

Figure 1: The architecture and workflow of the BETA-Rec
project.

To date, a range of platforms have been proposed and developed,
including Spotlight 2, Microsoft-Recommenders 3, DeepRec [11] 4,
OpenRec [10] and Cornac 5. However, while these works have
greatly aided in making the field more accessible, they are also
to blame for some of the challenges summarized earlier, as these
platforms are not strongly opinionated about the recommendation
methodology and pipeline. For instance, the popular Microsoft-
Recommenders platform provides no common framework, resulting
in each contained model implementing their own data preparation
process. By leaving these aspects at the user’s discretion and pro-
viding little in the way of guidance/best practices to follow, which
means that poor and/or inconsistent methodological choices are
sadly commonplace.

Hence, we propose a new platform named BETA-Rec, which is
a unified platform for building, evaluating and tuning automatic
recommender systems, so as to unify the recommendation method-
ology and pipeline. The primary features of our BETA-Rec are the
following:

(1) Contains a convenient and reusable dataset preparing toolkit
for processing raw datasets in a standardized way.

(2) Provides a unified framework for training models, monitor-
ing the training processes, as well as validation and testing
of the resultant models.

(3) Provides 9 recommendation models that can be used out-of-
the-box.

(4) Supports containerized deployment for use in different envi-
ronments.

(5) Integrates the Ray 6 hyperparameter tuning library.

2 BETA-REC ARCHITECTURE
BETA-Rec provides an end-to-end workflow for researchers and
practitioners to build their new models or use the built-in models.
It also provides a standardized way to configure model training and
evaluate the resultant models under a unified framework. Figure 1
provides the overview of the BETA-Rec architecture, which high-
lights the major components of the platform. We summarize each
of the four main stages as below:
Prepare Data: To make the workflow efficient, we implement two
key reusable components for preparing training data for different
2https://github.com/maciejkula/spotlight
3https://github.com/microsoft/recommenders
4https://github.com/cheungdaven/DeepRec
5https://github.com/PreferredAI/cornac
6https://github.com/ray-project/ray

recommendermodels. The DatasetBase component provides unified
interfaces for processing the raw dataset into interactions and split-
ting it using common strategies (e.g. leave-one-out, random split or
temporal split) into training/validation/testing sets. Meanwhile the
DataBase provides the tools to further convert the resultant data sets
into usable data structures (e.g. tensors with < user , item, ratinд >
or < user ,positive_item,neдative_item(s) >), dependant on the
requirements/supported features of the target model. Out-of-the-
box we support a number of commonly used datasets, including
Movielens_100k, Movielens_1m, Movielens_25m, LastFM. 7
Build Models: Our project provides a model engine (i.e. repre-
sented by the class ModelEngine) for conveniently building a py-
torch recommender model in a unified manner. In particular, it
provides a unified implementation for saving and loading models,
specifying the compute device, optimizer and loss (e.g. BPR loss [5]
or BCE loss [3]) to use during training. Out-of-the-box, 9 recom-
mendation models are provided, including classic baselines like
MF [6], as well as more advanced neural models such as NCF [3],
NGCF [9] and Triple2vec [8].
Train & Tune Models: The TrainEngine component provides
unified mechanisms to manage the end-to-end training process.
This encompasses: loading the configuration; loading the data;
training each epoch; calculating validation performance; check-
pointing models; testing early stopping criteria; and calculating
the final test performance. The TrainEngine also supports monitor-
ing/visualizing the training progress in real time, including resource
consumption and training metrics (such as the training loss and
evaluation performance on both the validation and testing sets) of
a deployed model via Tensorboard. It can also expose these real-
time metrics to a Prometheus time-series data store via an in-built
Prometheus exporter, enabling programmatic access to the training
state. To support easier and faster hyperparameter tuning for each
model, we also integrate the Ray framework 8, which is a Python
library for model training at scale. This enables the distribution of
model training/tuning across multiple gpus and/or compute nodes.
Evaluate Performance: Three categories of commonly used eval-
uation metrics for recommender system are included in this plat-
form, namely rating metrics, ranking metrics and classification
metrics. For rating metrics, we use Root Mean Square Error (RMSE),
R Squared (R2) and Mean Average Error (MAE) to measure the
effectiveness. For ranking metrics, we include Recall, Precision,
Normalized Discounted Cumulative Gain (NDCG) and Mean Av-
erage Precision (MAP) to measure performance of ranking lists.
Model evaluation using build-in classification metrics like Area-
Under-Curve (AUC) and Logistic loss are also supported. For de-
tailed definitions of these metrics, readers are referred to [2]. To
accelerate the evaluation process, the metric implementations are
multi-threaded.

3 CONCLUSION
In this demo, we have presented BETA-Rec, an open source project
for Building, Evaluating and Tuning Automated Recommender Sys-
tems. We illustrate how to use the new BETA-Rec platform on a

7https://grouplens.org/datasets/.
8https://github.com/ray-project/ray

589

https://github.com/maciejkula/spotlight
https://github.com/microsoft/recommenders
https://github.com/cheungdaven/DeepRec
https://github.com/PreferredAI/cornac
https://github.com/ray-project/ray
https://grouplens.org/datasets/
https://github.com/ray-project/ray


BETA-Rec: Build, Evaluate and Tune Automated Recommender Systems RecSys ’20, September 22–26, 2020, Virtual Event, Brazil

(remote) distributed cluster of machines. In particular, we demon-
strate the downloading and set-up of the engine, data preparation
configuration, as well as launching a distributed tuning job for a
neural recommender model. We also illustrate how the learning
process can be monitored in real-time.

ACKNOWLEDGMENTS
The research leading to this project has received funding from
the European Community’s Horizon 2020 research and innovation
programme under grant agreement n◦ 779747.

REFERENCES
[1] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are we

really making much progress? A worrying analysis of recent neural recommen-
dation approaches. In RecSys. 101–109.

[2] Asela Gunawardana and Guy Shani. 2009. A survey of accuracy evaluation
metrics of recommendation tasks. Journal of Machine Learning Research 10, Dec
(2009), 2935–2962.

[3] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW. 173–182.

[4] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. 2018. Sequence-
aware recommender systems. Comput. Surveys 51, 4 (2018), 66.

[5] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI. 452–
461.

[6] Steffen Rendle, Walid Krichene, Li Zhang, and John Anderson. 2020. Neural
Collaborative Filtering vs.Matrix Factorization Revisited. arXiv:2005.09683 (2020).

[7] Steffen Rendle, Li Zhang, and Yehuda Koren. 2019. On the difficulty of evaluating
baselines: A study on recommender systems. arXiv preprint arXiv:1905.01395
(2019).

[8] Mengting Wan, Di Wang, Jie Liu, Paul Bennett, and Julian McAuley. 2018. Repre-
senting and Recommending Shopping Baskets with Complementarity, Compati-
bility and Loyalty. In CIKM. 1133–1142.

[9] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In SIGIR. 165–174.

[10] Longqi Yang, Eugene Bagdasaryan, Joshua Gruenstein, Cheng-Kang Hsieh, and
Deborah Estrin. 2018. Openrec: A modular framework for extensible and adapt-
able recommendation algorithms. In WSDM. 664–672.

[11] Shuai Zhang, Yi Tay, Lina Yao, Bin Wu, and Aixin Sun. 2019. Deeprec: An open-
source toolkit for deep learning based recommendation. IJCAI Demonstrations
Track (2019).

[12] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep learning based recom-
mender system: A survey and new perspectives. Comput. Surveys 52, 1 (2019),
1–38.

590


	Abstract
	1 Introduction
	2 BETA-Rec Architecture
	3 Conclusion
	Acknowledgments
	References

